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An accurate and efficient boundary element procedure is developed for the analysis of
dynamic response of rigid surface footings. The footings are assumed to be resting on an
elastic half-space. The problem is formulated in the frequency domain by adopting the
half-space Green’s function for surface points loads. Therefore, only discretization is
required for the soil–footing interface. Two types of element, linear and quadratic
isoparametric elements, are employed for the discretization. Examples of the single-footing
as well as two-footing system are presented to demonstrate the application of the method.
The results are compared with other published results. It is demonstrated that the present
results are in good agreement with the approximate solution proposed by Tajimi at low
frequency range. However, the approximate solution may lead to an over-estimation of the
amplitude and decaying rate as the frequency increases.
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1. INTRODUCTION

The dynamic interaction of footings resting on the surface of a soil medium has been one
of the main interests of research over the years. In the case of a group of footings, not
only the interaction between each footing and the soil but also the interaction through the
soil between adjacent footings has to be considered. Various solutions were proposed to
solve this problem. For a footing system consisting of a small number of footings having
regular shapes, such as circular, square and rectangular, semi-analytic solutions proposed
by Triantafyllidis and Prange [1, 2] and Liou [3] provided highly accurate results. However,
the complexity of geometries and boundary conditions involved in engineering practice
have greatly limited the applications of such analytical procedures. Therefore, numerical
methods, such as the finite element method (FEM) and the boundary element method
(BEM), were developed to investigate the dynamic interaction or cross-interaction problem
[4–6]. It is well known that the BEM has its distinct advantages over FEM in studying
this problem [6]. Most of BEM solutions used constant elements because of its simplicity.
However, extensive numerical studies [7] reveal that, in some cases, use of constant
elements causes certain numerical problems in computation.

On the other hand, some simplified approaches for computing the dynamic response of
rigid surface footings were proposed by Kitamura and Sakurai [8] and Chow [9]. They were
based on almost the same line as conventional BEM by discretizing the contact area into
subregions and no numerical integration was required to evaluate the influence coefficients.
An approximate expression further derived by Tajimi [10] was adopted to compute the
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influence outside the loaded subregion so that large amounts of computation can be
saved. This improves the efficiency in the analysis of the interaction of group of footings.
Unfortunately, significant errors may arise from the substitution of Tajimi’s point-to-point
approximation for two finite subregions.

In this paper, a detailed numerical investigation is carried out on the dynamic interaction
of a group of footings using the boundary element procedure developed by the author
[4, 11]. The proposed BEM scheme is based on the frequency domain half-space Green’s
function and is found to be effective for two closely placed footings up to a vanishing small
separation. In the analysis, both linear and quadratic discretizations are employed.
Validation of the Tajimi’s approximation for computing the coupling influence coefficients
is also discussed.

2. BEM FORMULATION FOR DYNAMIC INTERACTION ANALYSIS

The response of a rigid surface footing resting on a uniform elastic half-space under the
action of harmonic excitations, either external forces or incident seismic waves, is
considered. The motion of such a system can be described in terms of the six generalized
displacement components as shown in Figure 1.

{D}=[D1, D2, D3, F1, F2, F3]T (1)

where Di and Fi (i=1, 2, 3) are the rigid body displacements and rotations, respectively,
at the centre of the footing. The compatibility of displacements at the contact region
requires that

{U}=[S]{D} (2)

where {U} is the displacement vector on the surface of the half-space and [S] is the
transform matrix. The submatrix of [S] for each node can be written as

[S]sub = &100 0
1
0

0
0
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0
0
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0
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Figure 1. Geometry and coordinate system.
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It can be shown readily that the resultant forces with components Pi and the resultant
moments with components Mi (i=1, 2, 3) acting on the contact area can be computed
from surface traction {t} by

{P}=gS

[S]T{t} dS. (4)

Due to the linearity of the problem, the displacements caused by any stress distribution
on the soil–footing contact region can be calculated by using the principle of superposition.
If the corresponding Green’s functions are known, the relation between the displacements
and tractions are:

{u}=gS

[G�(x1 − j1, x2 − j2)]{t} dj1 dj2. (5)

In the above equation, G� ij (x1 − j1, x2 − j2) is the Green’s function for the surface
displacement at (x1, x2) in the xi-direction due to a unit force acting at (j1, j2) in the
xj-direction. It can be determined directly by using double Fourier transformation and has
the form [11]

G� 11 =
1
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where m is the shear modulus, J0(z) and J1(z) are the Bessel functions of the first kind and
order 0 and 1, respectively. ks =v/c2, n= c2/c1, in which v is the circular frequency, c1
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and c2 are the dilatational and shear wave velocities respectively. F(z, ks ) is the Rayleigh
function,

F(z, ks )= (2z2 − k2
s R2)−4z2(z2 − k2

s R2)1/2(z2 − n2k2
s R2)1/2 (7)

R is the distance between the source and receiver points and f is its angle to the axis
parallel to the x1 axis.

One can easily prove that the influence functions of Wong and Luco [12] obtained under
the assumption of uniform distribution of contact stresses are exactly the same as equation
(6) when the contact area approaches zero and the contact forces are constant. However,
the Green’s function [G� ] of (6) permits the use of higher order elements so that higher order
interpolations are allowed. This is an improvement over those adopted in Reference [12]
which can be used for constant elements only.

3. NUMERICAL EVALUATION OF THE INTEGRAL EQUATIONS

To compute the integral equation (5), one has to discretize the contact region into a
number of elements and interpolate the field variables within the element. Choosing flat
boundary elements, the mathematics and programming can be very much simplified as the
field variables will only have to be collocated at the centroids of each element. This implies
that the contact stresses within the element are constant. The drawback of such an
approach is that it is not very accurate and convergence of the results is slow [5]. In this
study, the isoparametric representation of the geometry and the field variables has been
used. To improve the results, linear and quadratic elements are employed in the study.

Adopting the isoparametric mapping concept, the co-ordinates and the field variables
of any point within an element can be expressed in terms of the corresponding nodal values
as

{q}=[N]{Q} (8)

where {q} represents the quantity within the element and {Q} its value at the nodal points.
Due to the discretizing, equation (5) can be expressed in the discrete form as

{U}=[G]{T} (9)

where {U} and {T} are the global vector of displacement and traction, respectively, and
[G] is assembled from the element matrices [G]e of the form,

[G]e =gse
f

[G� ][N]=J= dh1 dh2 (10)

[N] is the matrix of shape functions and =J= the Jacobian matrix relating the transformation
from the cartesian to the local coordinate system.

In the case of rigid footings, the global rigid-body displacement vector {D} is assembled
from that of equation (1) for each isolated footing. The resultant forces {P} can also be
calculated over each footing separately and the force–displacement relation for a N
footings system can be written as:

{P}=[K(v)]{D} (11)

where [K(v)] is the 6N×6N impedance or dynamic stiffness matrix of the system including
cross-interaction effects between adjacent footings.

Since analytical integration of the integrals of equation (10) is impossible in most cases,
a numerical quadrature technique has to be used. The integrals are non-singular if the field
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Figure 2—(Caption on following page).
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Figure 2. (a) Horizontal impedance KHH of a circular foundation. (b) Vertical impedance KVV of a circular
foundation. (c) Rocking impedance KMM of a circular foundation. (d) Torsional impedance KTT of circular
foundation. (e) Coupling impedance KHM between horizontal and rocking. Key: ––, 56 elements; - - - , 12 elements;
– – – , 4 elements; w–w, Luco and Mita [14]; * - - - *, E. R. B.

point p is outside the element. The Gauss–Legendre formula [13] is adopted for computing
the integrals of the kernel-shape function products. For the singular case, it is fortunate
that the integrals only contain weak singularity. Therefore, they can be accurately
integrated by the sub-cell geometrical transformation technique [5]. This technique
eliminates the singularity and transforms the integrand into a well-behaved function,
because the behaviour of the determinant of the Jacobian matrix is approximately O(R)
and when combined with the kernel-shape function products ensures that the integrand
of equation (10) is a bounded function throughout the region of integration.

Figure 3. Convergence test (a) quadratic element, (b) linear element. Key: ––, 8×8; - - - , 4×4; – – – , 2×2;
— — , 1×1; Q, Rizzo et al. [15].
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Due to the singular nature of Green’s functions, special treatments are also required for
the evaluation of equation (6). The integrands of equation (6) may have singularities at
branch points and the Rayleigh pole of the Rayleigh function. For numerical purposes,
the range of integration is divided into several parts in accordance with the singular points.
Each of the component integrals is taken along the real axis with the exception at the
Rayleigh pole for which the path is a small indentation above the pole. The last one has
an infinite range (l, +a) in which l is a large positive number. By expanding the integrand
in inverse powers of z and substituting z=1/t, the transformed integrals become a finite
one and can be evaluated term by term by the numerical quadrature procedure.

Some difficulties may still exist since the integrands in equation (6) are highly oscillatory
in certain intervals and undergo rapid variations in their values near certain values of z.
The degree of irregularity increases with frequency. To deal with the irregular oscillation
in the integrand, the use of a variable interval and adaptive Gaussian quadrature scheme
was made in this study. This adaptive scheme automatically concentrates abscissas around
regions of sharp variation in integrands, takes full advantage of efficiency of Gaussian
quadrature schemes and at the same time adjusts the interval of integration as required
by the complexity of the intergrand. Details of the numerical implementation can be found
in Qian and Beskos [4, 11].

4. NUMERICAL STUDIES AND COMPARISONS

The results obtained by the proposed method are checked against benchmark examples.
A rigid circular footing of radius a resting on an elastic half space is taken as the first
example. The impedance functions of such footing are shown in Figure 2. In the figures,
KHH, KVV, KMM and KTT represent the horizontal, vertical, rocking and torsional impedance,
respectively. In addition, Figure 2(e) shows the result of KHM, the coupling between
horizontal and rocking component. The dimensionless frequency is defined as a0 =va/cs .
Poisson’s ratio is n=1/3. Numerical results are obtained by using 4, 12 and 56 quadratic
elements. Such elements are chosen because they can approximate the curve boundary
more closely. The corresponding results of Luco and Mita [14] are also shown in Figure
2. It must be pointed out that the results of reference [14] were obtained by assuming
relaxed boundary conditions: the horizontal displacements are left unconstrained for
vertical and rocking vibration while the vertical displacements are left unconstrained for

Figure 4. Vertical impedance K11
33 for the two-circular footing system. d/a=0·2, ——, present BEM, W––W

Liou [3]; d/a=1·0, - - - , present BEM, W - - W, Liou [3].
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Figure 5. Coupling vertical impedance K12
33 between two circular footings. d/a=0·2, ——, present BEM,

W––W Liou [3]; d/a=1·0, - - - , present BEM, W - - W, Liou [3].

horizontal vibrations. Compared with the results of Luco and Mita [14], the agreement
is excellent, especially when the same relaxed boundary (R.B.) condition is also adopted
in the present study. It is also noted that impedance functions at high frequencies cannot
be reasonably calculated by using a small number of elements, and therefore, comparison
is made for low frequencies only for the results of coarse mesh (4 elements).

Numerical convergence test has been made for both linear and quadratic elements. The
vertical compliance function CVV for a rigid square footing of sides 2a is evaluated. Figure 3

Figure 6. Two-footing model and discretization.
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shows that, as the total number of elements increases, the results of both linear and
quadratic elements converge. Of course, the quadratic element converges more rapidly and
is preferable for use in future studies. Compared with the results of Rizzo et al. [15], which
were obtained by using the full-space Green’s function in conjunction with quadratic
elements, the agreement is again excellent.

For a two-footing system, the force–displacement relationship of equation (11) can be
rewritten in submatrices form as

6{P}1

{P}27=$[K]11

[K]21

[K]12

[K]22%6{D}1

{D}27 (12)

where superscripts 1 and 2 denote the quantities for footing 1 and 2, respectively.
[K]ij(i, j=1, 2) are 6×6 submatrices with [K]12 = ([K]21)T representing the coupling
between the footings, i.e., the induced contact forces on footing i due to the displacements
of footing j. Figures 4 and 5 show the impedance functions K11

33 and K12
33 for the vertical

vibration of two circular footings. Poisson’s ratio of the soil is n=1/3 and the separation
between the two footings is selected to be d/a=0·2 and 1·0, where d is the separation
distance and a the radius of the footings. It can be seen that, for both cases, the present
results are in very good agreement with those of Liou [3]. It should be noted that, to avoid
the singularity at the Rayleigh poles, a small amount of material damping has been
assumed in the soil medium by Liou [3].

In studying cross-interaction effects between two closely spaced footings, Wong and
Luco [7] found that impedance functions calculated by the BEM procedure based on the
assumption of constant contact stresses may be markedly affected by surface discretization.
As the separation of the two footings approaches zero, the impedance functions given by
Wong and Luco [7] appear to increase without bound while those of Yoshida et al. [16]
showed finite values. Detailed numerical comparisons are presented below for easier
comprehension.

To consider the static impedance functions of a two-footing system, each footing is
discretized into 8×8 surface elements by two perpendicular grids as shown in Figure 6
with ae 1·0. The smaller elements are located along edges where stress concentration
occurs. The size of the smallest elements is given by D= a(a−1)/(a4 −1). Figures 7(a)
and (b) show the static horizontal impedance functions K11

11 and K12
11 vs D for different values

of dimensionless separation d/a. It is interesting to note that the values of K11
11 and K12

11 either
by Wong and Luco [7] or by the present method are approximately linear with D for finite
values of separation d. Different trend appears only as d and D approach zero
simultaneously. However, the sum (K11

11 +K12
11 ) always has a bound value as shown in

Figure 7(c). For d=0, the term 2(k11
11 +K12

11 ) represents the horizontal impedance function
for a rigid rectangular footing of dimension 4a×2a. There seems to be no strong evidence
that impedance functions should tend to infinity since it is believed that the coupling effects
betwen two footings will not cause an even higher order of singularity than in the case
of a single footing.

In view of the large amount of computer time required for evaluation of influence
function Gij , a simplified approximate formula for equation (6) was proposed by Tajimi
[10]. This approximate formula was employed by Kitamura and Sakurai [8] and Chow [9]
to study the dynamic response of rigid surface footings of arbitrary geometry. To apply
Tajimi’s approximation, one has assumed that the contact stresses are uniformly
distributed over each discretized subregion and equivalent to the concentrated forces
acting on its centre.
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For instance, the Tajimi’s approximation for vertical response D3 at the point i due to
a vertical force P3 at the point j is given by

Di
3 =Cij

33 · Pi
3

Cij
33 =

(1− n)
2pmR

e−ik1r, k1 =1·2v/cs (13)

where R is the distance between points i and j. To evaluate the coupling influence
coefficients of two discretized subregions by using equation (13) implies that the central

Figure 7. Effect of discretization on the static impedance functions, q Wong and Luco [7]; Q present BEM.
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points of two subregions are located at i and j, respectively and their dimensions are
ignored.

On the other hand, a more exact computation of the influence coefficients can be done
by adopting the present method. The coupling influence coefficients can be accurately
calculated by treating the two subregions as independent individuals and [C] equals to the
inverse of their impedance matrix [K], i.e.,

{D}=[C]{P}=[K]−1{P}. (14)

A comparison of results obtained by equations (13) and (14) is given in Figure 8. It
appears that the approximate formula is in good agreement with present results for low
frequencies only. As the frequency increases, there are considerable differences between the
two sets of results. Similar conclusions can be drawn for the horizontal components of the
response.

5. CONCLUSIONS

An accurate and efficient boundary element methodology for the dynamic analysis of
3-D rigid surface footings subjected to harmonic external force excitation has been
developed and fully tested. High order isoparametric elements are used in this study.
Compared with the constant elements, the present procedure has the advantage of yielding
higher accuracy and achieving rapid convergence, as well as the possibility for it to
accommodate complicated geometry. Numerical studies reveal that the use of Tajimi’s
approximation to evaluate the coupling influence coefficients may lead to unexpected
inaccuracy for dynamic cases.
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